查找:                      转第 显示法宝之窗 隐藏相关资料 下载下载 收藏收藏 打印打印 转发转发 小字 小字 大字 大字
【期刊名称】 《中国司法鉴定》
玻璃体液在法医毒物学实践中的价值评析
【英文标题】 Evaluation of Vitreous Humor in Forensic Toxicology Application
【作者】 沈敏向平
【作者单位】 司法部司法鉴定科学技术研究所; 上海市法医学重点实验室上海市司法鉴定专业技术服务平台
【分类】 司法鉴定学
【中文关键词】 玻璃体液;死后毒物学;血-视网膜屏障;法医毒物学;死后再分
【英文关键词】 vitreous humor; postmortem toxicology; blood-ocular barrier; forensic toxicology; postmortem redistribution
【文章编码】 1671-2072-(2017)01-0023-22
【文献标识码】 Adoi:10.3969/j.issn.1671-2072.2017.01.004
【期刊年份】 2017年【期号】 1
【页码】 23
【摘要】

玻璃体液因具有相对隔绝的解剖特征、受尸体腐败和内外部污染影响小、较少发生死后再分布、化学物质浓度相对稳定的优势特点而成为法医毒物学关注和研究的对象。从提升毒物鉴定结果的可靠性以及深化玻璃体液应用研究的角度,综述了玻璃体液毒物定性定量分析的文献报道,探讨了玻璃体液在死后毒物学实践中的潜在应用价值以及存在的问题,提出当缺失血液检材或血液的可靠性受死后因素影响时,玻璃体液可作为血液的替代检材或作为血液分析的质量控制措施。

【英文摘要】

Vitreous humor has become a specimen that attracts attentions and is worth studying because of its relatively independent anatomical characteristics. Drug concentrations in vitreous humor are less likely to be influenced by contamination, bacterial invasion, and postmortem redistribution. To promote the reliability of forensic toxicology results and to further study on the application of vitreous humor, this paper reviews the published quantitative and qualitative analysis for drugs in vitreous humor. The potential values and limitions of vitreous humor applied in forensic toxicology are discussed. It is proposed that vitreous humor is a suitable complementary specimen when blood is not available, or a control supplement to the blood analysis results, when they are affected by postmortem factors.

【全文】法宝引证码CLI.A.1222109    
  
  生物检材的选择与毒物鉴定结果信息的可靠性、科学性和充分性密切关联。在死后毒物学领域,由于尸体高度腐败、死后生成、死后再分布、体内局部污染等因素存在,选取可反映死者生前毒物真实水平的生物检材或血液的替代检材显得尤为重要。如研究表明相当部分毒物存在死后再分布,虽然死后再分布很少能改变大剂量毒物中毒死亡的定性,但却可能影响处于中毒量或接近致死量的案件的死因认定。目前人们已普遍认同死后再分布可导致心血和外周血毒物浓度的差异,应用外周血可显著降低死后再分布的影响,以保障分析结果的可靠性,然而外周血“金标准”仍然会受到尸体高度腐败的影响。于是,具有相对隔绝的解剖特点、受尸体腐败和外界污染影响小、较少发生死后再分布、化学物质浓度相对稳定的玻璃体液,成为法医病理学和法医毒物学领域关注和研究的对象。
  法医毒物学领域有关玻璃体液与血液等体液的比较研究已有近50年的历史,但多见于散在的、个别毒物的文献报道,尚未在鉴定实践中受到应有的关注和应用。随着人们对体内毒物转运消除和死后再分布的认知提升、实际案例定性定量数据的积累、分析技术的快速发展以及结果解释的证据要求,将玻璃体液作为血液的替代检材或作为血液分析的质量控制措施的理念意识、迫切性和可行性显著增强。本文从提升毒物鉴定结果的可靠性以及深化玻璃体液应用研究的角度,综述了玻璃体液中毒物的转运消除和死后变化,以及玻璃体液毒物定性定量分析研究的文献报道,并收集了100多种毒药物和300多个案例的浓度数据,探讨玻璃体液在法医毒物学实践中的应用价值和存在问题,以供同行参考、研究。
  1玻璃体液概述
  1.1玻璃体液的构成
  玻璃体是一种独特透明的细胞外基质,呈粘液凝胶状,容积约4.6mL。玻璃体的结构大分子有透明质酸、蛋白多糖、胶原及非胶原蛋白质,这些大分子结构具有互补功能,其交互作用构成了玻璃体的凝胶特性。另外,玻璃体还含有非结构蛋白质,大多数血清成分均可存在于玻璃体液中,但浓度要比血清低得多{1}。玻璃体有少量细胞即玻璃体细胞,主要限于玻璃体皮质和玻璃体基底部。玻璃体液的组成约99%为水,1%为少量蛋白质(包括可溶性蛋白)、无机盐、糖、乳酸、尿素、维生素C、氨基酸和脂质等。玻璃体随着年龄的增长出现进展性液化,液化过程从4岁开始,成人时约20%的玻璃体液化,80岁时增加至50%。
  1.2血-视网膜屏障
  血-视网膜屏障(blood retinal barrier, BRB)类似血-脑屏障,是一种选择性的屏障,其保证了视网膜功能所需的输入和限制可能的病原体(如酶、过敏毒素)入侵{2}。BRB实际上包括两个屏障:(1)外屏障。即BRB的上皮部分,由视网膜色素上皮细胞(RPE)及其连接组成。外屏障使视网膜组织液与脉络膜组织液分离,后者与血浆成分极为相似。RPE除作为视网膜的选择性通透屏障外,还能主动运输各种离子、分子和液体。(2)内屏障。即BRB的内皮部分,为视网膜毛细血管内皮细胞及其连接。血-视网膜屏障的通透性分为内向通透性和外向通透性,前者是指物质经过BRB透入到神经视网膜,甚至到达玻璃体;后者是指物质从玻璃体或神经视网膜经BRB到达视网膜毛细血管腔或脉络膜组织{3}。在正常情况下,由于视网膜毛细血管内皮细胞的单向主动运输作用和RPE泵的作用,内向通透性明显低于外向通透性,这是维持神经视网膜内环境稳定的必要条件。BRB可能会受到各种因素和病症的影响,最常见的是糖尿病视网膜病变和与年龄相关的黄斑变性。
  1.3外源性物质的跨膜转运
  法医毒物学领域所涉外源性物质主要来源于体循环,从视网膜穿透血-视网膜屏障进入玻璃体液。而这些物质从玻璃体液消除一般认为有两种途径:反方向通过BRB的后腔消除途径;通过前腔环形空间扩散至房水,然后由房水更新及脉络膜血流而消除。
  外源性物质渗透到视网膜取决于多种因素{4},包括血浆浓度、物质的理化性质、药理作用、分布容积、血浆蛋白结合和BRB相对通透性。物质可被动扩散或主动转运跨越屏障:一般情况下,较高分子量和/或较强亲水性更可能表现为主动的跨膜转运{5}。由于仅非结合型物质可以跨越生物膜,故血浆蛋白结合率也是决定扩散程度的另一重要因素。在法医毒物学研究领域,Holmgren等{6}发现血液/玻璃体液浓度比值与血浆蛋白结合率之间存在显著的相关性。
  许多蛋白承载着外源性物质的跨膜转运,BRB所涉的主要转运蛋白有,多药耐药(MDR)P-糖蛋白(P-gp转运蛋白,包括或MDR1)、多药耐药相关蛋白(MRP)和乳腺癌耐药蛋白(BCRP)。与被动扩散相比,主动转运在物质浓度超过载体的转运能力时有饱和现象,并与同底物的其他物质存在竞争性抑制。在法医毒物学领域,这种毒物的相互作用可能对玻璃体液浓度的解释产生重要影响,尤其是影响玻璃体液/血液浓度比。不同的转运机制及其影响因素对于理解以及解释外源性物质在血液和玻璃体液中浓度分布非常关键。临床上有许多眼科治疗药物的转运机制研究和药代动力学研究,但关于毒物的转运知识以及相关研究文献记载极为罕见。
  1.4玻璃体液的死后变化
  玻璃体由于受到眼眶的保护及相对隔绝的解剖特点,尸体腐败和外界污染等因素对其影响小。此外,其较少发生死后再分布,死后玻璃体液中外源性物质的化学变化较血液缓慢,浓度相对稳定。
  上述优势特征使其成为法医病理学死亡时间推断研究的重要对象,在中毒死亡鉴定中也具有潜在的应用价值。
  死后玻璃体液依据死亡时间和环境条件趋于液化。玻璃体液离体后其储存稳定性是法医毒物学关注的重要问题。Harper等{7}通过51对玻璃体液和外周血样本的分析,发现玻璃体液不易受细菌污染,但作者仍建议在无菌条件下取样(注射器和容器),以强化样品储存稳定性的优势。两眼球的毒物浓度比较研究表明,眠尔通、甲基苯丙胺、MDMA、苯妥英钠、巴比妥类和可卡因均没有显著差异,然而作者仍推荐两者独立采集、分别盛装{8-9}。
  也有采用稳定剂如氟化钠(NaF)或氟化钾(KF)阻断酶的活性,防止某些外源性物质的变化或降解。
  Holmgren等{6}评估了KF对血液和玻璃体液于-20℃保存1年条件下稳定性的影响,46个药物中仅佐匹克隆(n=13)在没有KF时表现出浓度显著降低。Melo等{10}研究了储存温度对玻璃体液中苯二氮卓类药物(劳拉西泮、艾司唑仑、利眠宁、凯他唑仑)浓度的影响,结果显示在低温(-20℃、-80℃)存储时,药物浓度没有明显变化;4℃和25℃时,某些药物可稳定数周,而凯他唑仑在12周时完全降解。Rees{11}考察了玻璃体液中可卡因存储84 d的稳定性,-18℃时无论有无稳定剂(NaF)均表现稳定;4℃条件下储存14d,其浓度在有和无稳定剂情况下分别下降25%和50%。
  在上述实验数据的基础上,法医学工作者应形成共识:独立采集两个眼球的玻璃体液并分别盛装保存;其中一个样本用于毒物学分析,应添加稳定剂(1.5%NaF或KF)以防止外源性物质的变化和降解,另一样本不加稳定剂,用于生物化学分析;样品应存放于-20℃条件下保存。
  2玻璃体液毒物分析结果评析
  1969年,Felby等{12}首先报道了关于死后玻璃体液分析的研究报告。作者在死者的玻璃体液中检出了巴比妥类药物,且浓度与其血清水平接近,表明巴比妥类药物可通过被动扩散进入玻璃体液。作者认为血清/玻璃体液浓度比>1表示死亡发生于摄药后不久,先于药物平衡相到达。在技术上分析玻璃体液比血液更为简便,尤其对于腐败尸体更凸显其优势。此后,玻璃体液毒物分析的研究和应用逐渐增多,表1总结了300多个血液和玻璃体液毒物浓度的研究报道{13-152},以供比较分析和结果解释。
  2.1定性分析结果评析
  定性筛选分析可发现或排除外源性物质的存在,是法医毒物鉴定最基本、最关键的环节。血液、尿液是定性筛选分析的常用生物检材,其中尿液因有更为宽(含代谢物)、长(毒物留存时间)的检测窗口而具有一定的优势。关于较为全面的玻璃体液用于筛选分析的适用性研究仅见2篇文献。2010年Pelander{153}运用液相色谱/飞行时间质谱(LC-TOFMS)对玻璃体液作为筛选分析检材的可替代性进行了评价。其实验室比较了50例案件的尿液和玻璃体液经LC-TOFMS筛选分析的阳性发现,结果两者的阳性检出总数分别为376和245,确定毒性物质总数为97,其中39为代谢产物。尿液分析确定55个母体化合物和39个代谢物,而玻璃体液的检出数较尿液低,分别为45和24。研究结果恰如预期,因尿液中目标物浓度较高,代谢物主要存在于尿液,故尿液有更高的阳性检出率。同时研究发现玻璃体液表现出低背景噪音,有效降低了仪器污染和基质效应。基于研究结果,作者认为玻璃体液是可行的、易于处理的定性筛选分析的替代性检材,尽管其目标物和代谢物浓度低于尿液,但方法cutoff值的平均数和中位数分别达到0.072μg/mL和0.032μg/mL,可以满足死后毒物学分析的需要。Metushi{154}2016年报道了血液和玻璃体液的气相色谱/质谱(GC-MS)筛选分析的比较研究结果。其实验室筛选分析了51个死者的血液和玻璃体液,阳性发现数分别为209和169,确定目标物的总数分别为71和60。研究表明玻璃体液中难以识别(存在)的目标物有7-氨基氯硝西泮、苯甲托品、环苯扎林、吗啡、去甲文拉法辛、苯妥英、异丙嗪、唑吡坦和佐匹克隆等,其可能解释是这些目标物难以跨越血-视网膜屏障。Metushi也建议玻璃体液可作为死后毒物筛选分析的适宜检材。尽管上述二项研究所用技术平台不同,对目标物的适用范围和灵敏度有所不同,但研究结果大体是一致的。即以尿液阳性检出数为基准时,玻璃体液的检出率为65%;以血液阳性检出数为基准时,玻璃体液的检出率为80%,而据表1统计,玻璃体液则有更高的阳性检出比例。当然,需要更大规模的、统一标准的研究结果来支撑玻璃体液检材的适用性评价。
  不同类别的外源性物质在玻璃体液中存在情况不同。(1)阿片类。通过示踪单乙酰吗啡(6-MAM)判断近期是否摄入海洛因一直是研究的关注焦点。pragst等{155}报道在29例涉阿片死亡案中,2例玻璃体液检出6-MAM而尿液呈阴性,尽管一般认为尿液中6-MAM浓度较高。Wyman等{156}研究表明对于海洛因相关的死亡,若仅用血液分析,6-MAM的未检出率分别为36%(n=25),59%(n=70),50%(n=12)和25%(n=20)。其提出两个假设解释为什么玻璃体液的6-MAM检出率高于血液:6-MAM因亲脂性(logP值=1.56)易透过血-视网膜屏障;玻璃体液中无酯酶存在,从而限制了6-MAM的降解。然而假设需要谨慎,因为许多生物物种的玻璃体液中存在活性酯酶,可使海洛因水解成6-MAM和吗啡。另有假说认为,玻璃体液酯酶的性质不同于血液,如脑突触乙酰胆碱酯酶无法水解海洛因。血液中6-MAM阴性时,有时也用吗啡/可待因比来判断所检吗啡系可待因代谢(吗啡/可待因<1)还是摄入海洛因(吗啡/可待因>1)。Rees等{157}发现,玻璃体液中吗啡/可待因比对揭示海洛因摄入与否也同样有效。(2)苯二氮卓类。据Robertson报道{158},其实验室涉及3-硝基苯二氮卓类(硝西泮、氟硝西泮、氯硝西泮)的死后毒物学分析,仅在其中30%的血液中检出母体药物,15%的血液中检出7-氨基代谢物,而玻璃体液母体药物的检出率为10%,7-氨基代谢物均未检出。其检出率差异可能由于玻璃体液中目标物水平一般仅为血液的1/3。Scott{159}分析了17例苯二氮卓类药物(地西泮、去甲西泮、替马西泮)死亡案,其中7例血液中检出而玻璃体液中均为检出。实验结果表明,苯二氮卓类表现为高度蛋白结合,其中性或弱酸性的性质则进一步阻止其进入玻璃体液。(3)其他物质。在无血液的情况下,玻璃体液对于揭示可卡因的滥用也具有价值,有报道{160}认为玻璃体液的检测窗口较血液更宽。Jenkins{161}的研究表明涉苯环己哌啶(PCP)死者其玻璃体液均呈阳性。这些研究揭示了玻璃体液在检测外源性物质方面的适宜性,某些目标物(6-MAM、可卡因和PCP)的检测窗较血液更宽,而苯二氮卓类物质则有所限制。对于在体内低浓度存在的目标物如大麻酚类和四氢大麻酸,则不宜采用玻璃体液分析,有报道在30例阳性血液的死者中,仅1例玻璃体液呈阳性。要指出的是目前的研究大部分套用血液分析方法,开发和验证玻璃体液的专用技术可能会降低检测阈值和提高检出率。
  2.2定量分析结果评析
  2.2.1阿片类
  Scott{162}报道了20例海洛因依赖者死亡案例的分析结果:玻璃体液的吗啡浓度较血液低,但两者具有显著的相关性(R2=0.697);玻璃体液的6-MAM浓度高于血液和其他组织,但与血液没有相关性,作者据此认为玻璃体液可作为吗啡分析的替代检材。Rees{157}证实了上述结果,但认为玻璃体液和血液吗啡浓度的相关性取决于摄入至死亡的时间间隔,也可受摄入方式的影响,故血液吗啡浓度不能从玻璃体液水平外推。作者同样获得玻璃体液可待因浓度高于血液,两者呈相关性(R2=0.672)的实验结果。羟考酮显示玻璃体液和血药浓度的正相关关系,但从玻璃体液外推血液水平结果过于分散{163}。
  2.2.2可卡因
  与其他物质不同,死后血液中可卡因浓度几乎很少与死亡时间关联,而很大程度上取决于体内或体外降解。因玻璃体液中外源性物质相对稳定,故对其研究相对较多,然而结果不尽相同。Antonides{164}通过对40例案件分析,发现玻璃体液可卡因浓度高于血液的占72%,但两者没有相关性,其认为高玻璃体液浓度应归结于血液中可卡因的降解。Duer{165}以“总可卡因”即可卡因及其代谢物(爱康宁,爱康宁甲酯和苯甲酰爱康宁)浓度的总和为对象,获得了“玻璃体液和外周血以及玻璃体液和心血浓度间的相关性分别为0.939和0.883”的结果,故笔者认为玻璃体液与血液相同,分析可卡因是可靠的。也有报道玻璃体液浓度与血液浓度接近(平均值1.03;范围0.36~2.94),认为玻璃体液阳性结果可以确认血液中可卡因的存在但不能准确估算血药浓度{166}。Carvahlo{167}等发现在7例可卡因过量死亡案例中玻璃体液与血液呈现良好的相关性(可卡因r=0.98;苯甲酰爱康宁r=0.95),而在11例涉可卡因意外死亡案例中并非如此。另有研究表明,玻璃体液和血液可卡因、cocaethylene平均浓度(n=53)没有显著不同。这些结果差异突显了参数的重要性,因可卡因死亡案件的摄药时间、死亡时间、死后再分布和稳定性不能控制,故根据玻璃体液水平不能外推死亡时血液可卡因浓度。
  2.2.2苯二氮卓类
  对于硝基苯二氮卓类(硝西泮、氟硝西泮、氯硝西泮)及其氨基代谢物,Robertson{158}统计52个死亡案例血液和玻璃体液目标物浓度的相关性:母体药物为r=0.626,代谢物为r=0.764。作者称血液与尿液、胆汁和肝脏的代谢物浓度也存在此类正相关关系。Scott{159}报道了17例死者的替马西泮、地西泮和去甲西泮的相关系数分别为0.788、0.723和0.068,玻璃体液水平显著低于血液。虽然有相关性的研究报道,但数据结果较为分散,可能与摄药方式、摄药至死亡时间以及尸体解剖时间等参数有关。其他研究给出了玻璃体液和血液的弱相关性和分散结果发现,如去甲西泮(n=58,R2=0.473)、溴西泮(n=31,R2=0.345)和奥沙西泮(n=28,R2=0.588)。由此看来,玻璃体液浓度不能定量解释其血液水平。
  2.2.3γ-羟基丁酸
  γ-羟丁酸(GHB)天然存在于生物体,临床上用于麻醉,同时GHB也作为滥用物质成为死后毒物学的新生目标物。死后血药浓度解释的目的是确定所发现的GHB属内源性还是外源性进入。血液GHB水平升高会误导提示外源性物质的进入,而玻璃体液可以验证血液水平的真实性。Kintz{168}称可用“解释树”确定GHB来源,首先用心血和50 mg/L阈值来判断GHB的存在,阳性时则用外周血和玻璃体液进一步证实。另有研究报道,分析心血、外周血、玻璃体液、尿液和脑脊液,发现玻璃体液水平高于血液水平,有时甚至是五个检材中最高的{169}。在最近的综述中,有学者强调阈值可用于个案的解释而不是硬指标{170},笔者观察到随着取样和储存技术的增强,GHB阈值有下降的趋势。
  2.2.4 MDMA
  De Letter{9}等证明在平衡稳态时,玻璃体液和血液MDMA浓度之间存在相关性,120 min和240 min时的相关系数分别为0.98和0.95。研究表明,玻璃体液MDMA浓度较血液有更长时间(73 h)的稳定性,更能代表生前的血液水平。玻璃体液可以用于推断死亡时血液中MDMA浓度。
  2.2.5其他化合物
  56例死亡案例研究发现,血液和玻璃体液PCP水平间没有相关性{161}。Holmgren{6}考察了血液和玻璃体液中46个目标物于-20℃保存12个月后两者间的相关性,结果显示约一半目标物(n=23),包括苯丙胺、地尔硫卓、曲马多,文拉法辛等存在相关性,而化合物如氯丙咪嗪、氯氮平、舍曲林等则没有相关性。鉴于这些结果基于的样本量较小,不能支持从玻璃体液浓度外推至血液浓度,但可作为未来研究的基础。
  如上所述,死亡案件中用于从玻璃体液水平外推血液水平的基础是两者的相关性。然而,也有学者提出用玻璃体液地西泮浓度的统计数据来区分临床治疗和过量使用。
  2.3典型目标物-乙醇
  乙醇是法医学鉴定实践中普遍涉及的重要目标物,也是充分体现玻璃体液价值的典型目标物。通常准确测定和正确解读死者的血液乙醇浓度(BAC)是法医毒物学工作者的重要任务,对于死因确认和案件性质起着关键性的作用。然而由于尸体腐败、乙醇死后生成、乙醇死后扩散、交通和航空遇难污染以及血液样本缺失等因素,使死后BAC的解释和应用遭受极大的挑战,于是人们把研究目标集中于人体富含水的其他液体——玻璃体液。
  Iona{171}进行了较大规模的玻璃体液乙醇浓度(VAC)、尿液乙醇浓度(UAC)和BAC的相关性研究,统计分析显示三者乙醇浓度存在显著相关性,其中VAC与BAC的相关系数为0.887,VAC/BAC为1.07(平均值为1.11,SD为0.299)。相同的研究结果也有多个报道{172-173},如Jones在对706个案例研究的基础上得到VAC/BAC平均值为1.19,标准偏差为0.285;DiMaio报道VAC/BAC平均值为1.2等。Iona认为,玻璃体液与血液乙醇浓度的相关性、可靠性优于尿液,当血液样本缺失或怀疑BAC受死后因素影响(死后生成,腐败损失、防腐干扰、死后再分布)时,玻璃体液可作为血液的替代检材或作为血液乙醇浓度解释的质量控制措施。如空难致人体严重撕裂伤,可引起广泛的微生物污染因而生成大量乙醇(1.9 mg/mL),死后再分布或胃部扩散也可引起心血BAC的假性升高,故某些情况下单纯依据死后BAC易产生错误的结论。此外,作者还认为玻璃体液在乙醇分析中的价值体现在可以对BAC进行追溯验证。由于VAC总体较BAC高,且峰值浓度(平衡)较血液延迟1~2 h,即乙醇吸收阶段,VAC低于BAC; 乙醇消除阶段,VAC高于BAC,故玻璃体液可提供死者死亡前1~2 h的BAC信息。血液与玻璃体液的储存稳定性研究也表明玻璃体液更有优势。Olsen{174}复评估了迈阿密法医部门5~6年前收集的血液和玻璃体液样本,结果BAC有35%的降低,VAC仅有6.1%的损失。
  近年来,人们试图用乙醇的体内代谢物乙醛葡萄糖醛酸苷及酯类区分腐败产生以及外污染,但这些新的marker是否可代替玻璃体液呢?目前的检测水平尚有难度,因为BAC需0.5 mg/mL以上才能同时检出代谢物,但腐败产生的BAC一般<0.3 mg/mL,此时代谢物分析结果阴性,仍无法判断是生前摄入还是死后形成。
  2.4生存时间
  某些学者提出用血液/玻璃体液浓度比估计生存时间(即摄药至死亡的时间间隔),其基本依据是外源性物质从血液到玻璃体液需要一定的分布时间,摄药初期血液/玻璃体液浓度比高于平衡时两者的浓度比。Scott等{159}的案例数据研究表明,摄苯二氮卓类快速死亡的血液/玻璃体液浓度比更高,其提供了估计摄药时间的方法,但作者强调该浓度比值可受各种因素尤其是死后再分布的影响。地西泮动物实验模型研究表明,肌注后1 h血液/玻璃体液浓度比为20,6h下降至4.5,药后1~2h达平衡时,比例为10,作者认为血液/玻璃体液浓度比可作为判断摄药至死亡时间的补充工具。Antonides等{164}也调查分析了摄药死亡案例,报道当可卡因血药浓度高于玻璃体液时,死亡发生于摄药后不久,此时血液中苯甲酰爱康宁水平双倍于玻璃体液水平。
  2.5死后再分布
  De Letter等{175}以兔实验模型为对象,研究了MDMA的死后再分布,结果表明玻璃体液中MDMA浓度更稳定,代表生前血液水平而不是死后血液水平。然而研究发现,眼球壁的MDMA水平有升高现象,尤其是死亡时间较长的,故存在扩散的可能性。地高辛的死后再分布研究发现,19例尸体的脉络膜和视网膜组织中地高辛浓度非常高(63.9~485 ng/g),接近心肌药物水平和高于玻璃体液的发现(2.2~7.1ng/mL),笔者认为这些差异表明存在从脉络膜和视网膜组织至玻璃体液的死后再分布{176}。Mckinney{177}等研究了可卡因的死后再分布,实验猪静脉给药后5min处死,采集死亡时和死后8h体液,结果血液可卡因浓度没有改变,而玻璃体液水平有较大上升,笔者认为该浓度上升系死后再分布引起。玻璃体液可卡因的基线水平较低(平均为939ng/mL,血液平均为3245 ng/mL),而8 h后两者接近(玻璃体液平均为3067ng/mL; 血液平均为3568 ng/mL),作者推测视网膜组织可能是药物积累的区域,死后释放至玻璃体液。Maskell等{178}研究了海洛因代谢物吗啡和3-吗啡葡醛酸苷(M3G)的死后再分布,发现实验兔死后24h玻璃体液游离吗啡浓度和总吗啡浓度分别增加181%和425%,M3G浓度增加了1,002%。作者解释玻璃体液中吗啡、M3G浓度增加系特定组织中目标物浓度扩散所致。
  上述研究表明,玻璃体液是防止受腹腔死后再分布影响的主要基质,但眼组织中累积的目标物死后可扩散至玻璃体液。
  2.6局限性
  玻璃体液的局限性除了采样量有限外,主要体现在法医毒物学关注的定量解释。各种实验动物或尸体解剖研究结果表明,大多数目标物的玻璃体液浓度和血液浓度不相关或存在显著的分散度,故玻璃体液浓度通常不能外推至血药浓度。这些研究结果也反映了各种不可控因素和未知参数的影响,如存活时间、死亡时间、眼科疾病和药物相互作用等。要优化玻璃体液在定量解释中的效用,必须考虑以下可能性{13}。(1)要提高对玻璃体液中外源性物质分布的认知。虽然扩散看似大多数化合物的运转机制,但血液扩散不仅仅是被动的,还需要增强理解目标物的生前分布作用和主动运输机制。(2)探索目标物在眼组织中的分布非常重要,特别是脉络膜和视网膜有可能作为目标物累积区,死后进行玻璃体液再分布。(3)必须运用统计工具,以期最大限度的确定评估玻璃体液浓度的不确定性。即使发现高于血液的外源性物质浓度,重要的是要根据案件的具体情况,报告玻璃体液结果的不确定性。
    表1涉毒死者玻璃体液和血液中目标物浓度
  

┌────────┬──┬────────┬────────────────────┬──────────┬───┐
  │目标物     │N  │死因      │血液浓度                │-玻璃体液浓度平均值(│参考 │
  │        │  │        │                    │或范围)       │文献 │
  │        │  │        ├──────────┬─────────┤          │   │
  │        │  │        │外周血       │心血       │          │   │
  ├────────┼──┼────────┼──────────┼─────────┼──────────┼───┤
  │25C-NBOMe    │1  │涉25C-NBOMe中毒 │0.60μg/kg     │         │0.33μg/kg     │[14] │
  │        │  │        │(死前浓度:0.81μxg/k│         │          │   │
  │        │  │        │g)         │         │          │   │
  ├────────┼──┼────────┼──────────┼─────────┼──────────┼───┤
  │4-MTA      │1  │涉4-MTA和MDMA过 │5.49mg/L      │7.60mg/L     │1.31mg/L      │[15] │
  │        │  │量死亡     │          │         │          │   │
  ├────────┼──┼────────┼──────────┼─────────┼──────────┼───┤
  │5-(2-氨丙基)吲哚│2  │涉5-IT中毒死  │1.2mg/L       │1.2mg/L      │0.8mg/L       │[16] │
  │(5-IT)     │  │        │          │         │          │   │
  ├────────┼──┼────────┼──────────┼─────────┼──────────┼───┤
  │        │  │多种药物中毒  │1.0mg/L       │2.6mg/L      │1.4mg/L       │   │
  ├────────┼──┼────────┼──────────┼─────────┼──────────┼───┤
  │6-MAM      │2  │多种药物中毒  │22.0ng/mL(0.93~21.1)│         │66.0ng/mL(26.8?131.│[17] │
  │        │  │        │          │         │92)         │   │
  ├────────┼──┼────────┼──────────┼─────────┼──────────┼───┤
  │醋丁洛尔    │1  │涉醋丁洛尔的中毒│34.7μg/mL     │         │17.9μg/mL     │[18] │
  │        │  │死       │          │         │          │   │
  ├────────┼──┼────────┼──────────┼─────────┼──────────┼───┤
  │扑热息痛    │2  │可能因高浓度摄入│1280mg/L      │1220mg/L     │878mg/L       │[19] │
  │        │  │致心肌梗死   │          │         │779mg/L       │   │
  ├────────┼──┼────────┼──────────┼─────────┼──────────┼───┤
  │扑热息痛    │1  │多种药物中毒  │60mg/L       │胸腔血:30mg/L   │57mg/L       │[2o] │
  ├────────┼──┼────────┼──────────┼─────────┼──────────┼───┤
  │丙酮      │1  │多种药物中毒  │103mg/100mL     │77mg/100mL    │120mg/100mL     │[21] │
  ├────────┼──┼────────┼──────────┼─────────┼──────────┼───┤
  │乌头碱     │1  │涉乌头中毒   │17.9μg/L      │87.9μg/L     │8.4μg/L      │[22] │
  ├────────┼──┼────────┼──────────┼─────────┼──────────┼───┤
  │阿普唑仑    │1  │阿普唑仑急性中毒│2.3mg/L       │2.1mg/L      │0.58mg/L      │[23] │
  ├────────┼──┼────────┼──────────┼─────────┼──────────┼───┤
  │阿米替林    │1  │涉阿米替林中毒 │0.82mg/L      │         │6.05mg/L      │[24] │
  ├────────┼──┼────────┼──────────┼─────────┼──────────┼───┤
  │阿米替林(去甲替 │1  │涉阿米替林中毒 │0.25μg/mL(去甲替林:│         │0.05μg/mL(去甲替林:│[25] │
  │林)       │  │        │0.58μg/mL)     │         │0.06μg/mL)     │   │
  ├────────┼──┼────────┼──────────┼─────────┼──────────┼───┤
  │阿米替林(去甲替 │1  │涉阿米替林中毒 │1.8μg/mL(去甲替林:0│2.8μg/mL(去甲替林│0.8fxg/mL      │[26] │
  │林)       │  │        │.6μg/mL)      │:1.2μg/mL)    │          │   │
  ├────────┼──┼────────┼──────────┼─────────┼──────────┼───┤
  │阿米替林(去甲替 │1  │多种药物中毒  │2.5mg/L(去甲替林:0.7│7.1mg/L(去甲替林:0│0.67mg/L      │[27] │
  │林)       │  │        │μg/mL)       │.9μg/mL)     │          │   │
  ├────────┼──┼────────┼──────────┼─────────┼──────────┼───┤
  │异戊巴比妥   │  │涉异戊巴比妥死亡│6mg/L;28mg/L    │         │8mg/L;26mg/L    │[28] │
  ├────────┼──┼────────┼──────────┼─────────┼──────────┼───┤
  │阿莫沙平    │1  │涉阿莫沙平中毒死│11.50mg/L      │         │0.20mg/L      │[29] │
  ├────────┼──┼────────┼──────────┼─────────┼──────────┼───┤
  │苯丙胺     │1  │涉甲基苯丙胺中毒│0.74mg/L      │         │0.27mg/L      │[30] │
  │        │  │死       │          │         │          │   │
  ├────────┼──┼────────┼──────────┼─────────┼──────────┼───┤
  │苯丙胺     │1  │涉甲基苯丙胺中毒│0.43mg/L      │0.70mg/L     │0.64mg/L      │[31] │
  │        │  │死       │          │         │          │   │
  ├────────┼──┼────────┼──────────┼─────────┼──────────┼───┤
  │苯丙胺     │1  │涉甲基苯丙胺中毒│1.3mg/L       │         │0.5mg/L       │[32] │
  │        │  │死       │          │         │          │   │
  ├────────┼──┼────────┼──────────┼─────────┼──────────┼───┤
  │砷       │1  │砷中毒死    │1.3mg/L       │         │0.050mg/L      │[33] │
  ├────────┼──┼────────┼──────────┼─────────┼──────────┼───┤
  │托莫西汀    │  │涉托莫西汀意外死│0.33mg/L      │0.65mg/L     │0.1mg/L       │[34] │
  ├────────┼──┼────────┼──────────┼─────────┼──────────┼───┤
  │        │  │文法拉辛和托莫西│5.4mg/L       │8.3mg/L      │0.96mg/L      │   │
  │        │  │汀过量死    │          │         │          │   │
  ├────────┼──┼────────┼──────────┼─────────┼──────────┼───┤
  │卞甲苯丙胺   │1  │涉卞甲苯丙胺中毒│13.9μg/mL     │         │21.0μg/mL     │[35] │
  │        │  │死       │          │         │          │   │
  ├────────┼──┼────────┼──────────┼─────────┼──────────┼───┤
  │大隆      │1  │涉大隆中毒死  │3920ng/mL      │         │—         │[26] │
  ├────────┼──┼────────┼──────────┼─────────┼──────────┼───┤
  │布比卡因    │1  │涉布比卡因中毒死│3.8mg/L       │2.8mg/L      │1.3mg/L       │[27] │
  └────────┴──┴────────┴──────────┴─────────┴──────────┴───┘

    
    续表1
  

┌──────┬──┬─────────┬──────────────────────┬──────────┬───┐
  │目标物   │N  │死因       │血液浓度                  │玻璃体液浓度平均值( │参考 │
  │      │  │         │                      │或范围)       │文献 │
  │      │  │         ├──────────┬───────────┤          │   │
  │      │  │         │外周血       │心血         │          │   │
  ├──────┼──┼─────────┼──────────┼───────────┼──────────┼───┤
  │布替林   │1  │涉布替林中毒死  │14.9mg/L      │           │0.52mg/L      │[38] │
  ├──────┼──┼─────────┼──────────┼───────────┼──────────┼───┤
  │咖啡因   │3  │摄入过量死    │184.1mg/L;343.9mg/L│           │99.8mg/L;95.9mg/L;1│P9]  │
  │      │  │         │;251.0mg/L     │           │47mg/L       │   │
  ├──────┼──┼─────────┼──────────┼───────────┼──────────┼───┤
  │咖啡因   │1  │多种药物中毒   │3000ng/mL      │           │1550ng/mL      │[17] │
  ├──────┼──┼─────────┼──────────┼───────────┼──────────┼───┤
  │四氯化碳  │1  │涉四氯化碳中毒死 │143mg/L       │57.5mg/L       │170mg/L       │[40] │
  ├──────┼──┼─────────┼──────────┼───────────┼──────────┼───┤
  │氯醛糖   │1  │涉氯醛糖中毒死  │65.1mg/L      │           │24.7mg/L      │[41] │
  ├──────┼──┼─────────┼──────────┼───────────┼──────────┼───┤
  │氯苯那敏  │1  │多种药物中毒   │0.2mg/L       │           │0.1mg/L       │[42] │
  ├──────┼──┼─────────┼──────────┼───────────┼──────────┼───┤
  │甲基毒死蜱 │1  │涉甲基毒死蜱中毒死│0.615mg/L      │左心血:1.01mg/L右心血:│0.009mg/L      │[43] │
  │      │  │         │          │1.71mg/L       │          │   │
  ├──────┼──┼─────────┼──────────┼───────────┼──────────┼───┤
  │西酞普兰  │9  │涉西酞普兰中毒死 │0.8mg/L       │           │0.3mg/L       │[44] │
  ├──────┼──┼─────────┼──────────┼───────────┼──────────┼───┤
  │      │  │多种药物中毒   │0.4mg/L(0.2?0.7)  │           │0.23mg/L(0.1?0.4) │   │
  ├──────┼──┼─────────┼──────────┼───────────┼──────────┼───┤
  │西酞普兰  │1  │多种药物中毒   │758ng/mL      │           │1130ng/mL      │[17] │
  ├──────┼──┼─────────┼──────────┼───────────┼──────────┼───┤
  │西酞普兰  │1  │涉赛庚啶和西酞普兰│2.3mg/L       │           │0.8mg/L       │[45] │
  │      │  │中毒死      │          │           │          │   │
  ├──────┼──┼─────────┼──────────┼───────────┼──────────┼───┤
  │氯米帕明  │1  │涉氯米帕明中毒死 │1729ng/mL      │           │1000ng/mL      │[46] │
  ├──────┼──┼─────────┼──────────┼───────────┼──────────┼───┤
  │氯噻平   │3  │多种药物急性中毒 │110μg/L~340μg/L  │75μg/L?200μg/L   │16μg/L?30μg/L  │[47] │
  ├──────┼──┼─────────┼──────────┼───────────┼──────────┼───┤
  │氯氮平   │1  │涉氯氮平中毒死  │8.8mg/L       │12.0mg/L       │1.3mg/L       │[48] │
  ├──────┼──┼─────────┼──────────┼───────────┼──────────┼───┤
  │可卡因   │2  │涉可卡因中毒死  │1.8mg/L;13.0mg/L  │           │2.4mg/L;14.0mg/L  │[49] │
  ├──────┼──┼─────────┼──────────┼───────────┼──────────┼───┤
  │可卡因   │1  │涉可卡因过量死  │330mg/L       │           │13mg/L       │[50] │
  ├──────┼──┼─────────┼──────────┼───────────┼──────────┼───┤
  │可卡因   │1  │体内包裹致可卡因中│4μg/mL       │           │7.1μg/mL      │[51] │
  │      │  │毒死       │          │           │          │   │
  ├──────┼──┼─────────┼──────────┼───────────┼──────────┼───┤
  │可_因    │1  │窒息死      │3210ng/mL      │左心血:1640ng/mL右心血│230ng/mL      │[52] │
  │      │  │         │          │:1110ng/mL      │          │   │
  ├──────┼──┼─────────┼──────────┼───────────┼──────────┼───┤
  │可卡因   │1  │吞服可g因致死   │211mg/L       │           │0.8mg/L       │[53] │
  ├──────┼──┼─────────┼──────────┼───────────┼──────────┼───┤
  │可_因    │3  │涉可卡因中毒死  │0.37mg/dL;0.75mg/dL;│           │0.21mg/dL;0.38mg/dL;│[54] │
  │      │  │         │0.11mg/dL      │           │0.14mg/dL      │   │
  ├──────┼──┼─────────┼──────────┼───────────┼──────────┼───┤
  │可卡因(BZE,E│1  │可卡因过量    │5.0mg/L       │9.0mg/L        │5.3mg/L(BZE=5.6mg/L;│[55] │
  │ME)     │  │         │(BZE=10.4mg/L;EME=4.│(BZE=20.1mg/L;EME=14.│EME=2.6mg/L)    │   │
  │      │  │         │1mg/L)       │4mg/L)        │          │   │
  ├──────┼──┼─────────┼──────────┼───────────┼──────────┼───┤
  │可卡因(BZE) │4  │不明       │<5ng/mL(BZE:<5ng/m│           │<5ng/mL(BZE:30ng/mL│[56] │
  │      │  │         │L)         │           │)          │   │
  ├──────┼──┼─────────┼──────────┼───────────┼──────────┼───┤
  │      │  │不明       │<5ng/mL(BZE:216ng/m│           │痕量(BZE:311ng/mL) │   │
  │      │  │         │L)         │           │          │   │
  ├──────┼──┼─────────┼──────────┼───────────┼──────────┼───┤
  │      │  │不明       │400ng/mL(BZE:800ng/m│           │250ng/mL(BZE:420ng/m│   │
  │      │  │         │L)         │           │L)         │   │
  ├──────┼──┼─────────┼──────────┼───────────┼──────────┼───┤
  │      │  │不明       │5000ng/mL(BZE:90ng/m│           │2300ng/mL(BZE:120ng/│   │
  │      │  │         │L)         │           │mL)         │   │
  ├──────┼──┼─────────┼──────────┼───────────┼──────────┼───┤
  │可待因   │3  │多种药物中毒   │30.92ng/mL(18.6-49.1│           │26.27ng/mL(15.3?32.│[17] │
  │      │  │         │8)         │           │5)         │   │
  ├──────┼──┼─────────┼──────────┼───────────┼──────────┼───┤
  │可待因   │1  │不明       │全部:1280ng/mL游离态│全部:1260ng/mL游离态:2│全部:799ng/mL游离态:│[57] │
  │      │  │         │:117ng/mL      │12ng/mL        │342ng/mL      │   │
  └──────┴──┴─────────┴──────────┴───────────┴──────────┴───┘

    
    续表1
  

┌──────┬──┬─────────┬────────────────────┬──────────┬───┐
  │目标物   │N  │死因       │血液浓度                │-玻璃体液浓度平均值(│参考 │
  │      │  │         │                    │或范围)       │文献 │
  │      │  │         ├───────────┬────────┤          │   │
  │      │  │         │外周血        │心血      │          │   │
  ├──────┼──┼─────────┼───────────┼────────┼──────────┼───┤
  │可待因   │  │不明       │<5ng/mL       │        │<5ng/mL      │[56] │
  ├──────┼──┼─────────┼───────────┼────────┼──────────┼───┤
  │      │1  │不明       │<5ng/mL       │        │61ng/mL(36-86)   │   │
  ├──────┼──┼─────────┼───────────┼────────┼──────────┼───┤
  │      │1  │不明       │30ng/mL(20?40)    │        │<5ng/mL      │   │
  ├──────┼──┼─────────┼───────────┼────────┼──────────┼───┤
  │      │  │不明       │333ng/mL(100-500)   │        │77ng/mL(20?150)  │   │
  ├──────┼──┼─────────┼───────────┼────────┼──────────┼───┤
  │可待因(6-葡 │2  │不明       │221ng/mL       │223ng/mL(6-葡糖 │279ng/mL(6-葡糖苷酸=│[58] │
  │糖苷酸;去甲│  │         │(6-葡糖苷酸=3530ng/mL │苷酸=2170ng/mL;│185ng/mL;去甲可待因│   │
  │可待因)   │  │         │;去甲可待因=17ng/mL) │去甲可待因=19ng/│=9ng/mL)      │   │
  │      │  │         │           │mL)       │          │   │
  ├──────┼──┼─────────┼───────────┼────────┼──────────┼───┤
  │      │  │不明       │8770ng/mL       │1580ng/mL(6-葡糖│1180ng/mL      │   │
  │      │  │         │(6-葡糖苷酸=17,100ng/│苷酸=2179ng/mL;│(6-葡糖苷酸=1230ng/m│   │
  │      │  │         │mL;去甲可待因=500ng/m│去甲可待因=73ng/│L;去甲可待因=25ng/m│   │
  │      │  │         │L)          │mL)       │L)         │   │
  ├──────┼──┼─────────┼───────────┼────────┼──────────┼───┤
  │秋水仙碱  │2  │涉秋水仙碱中毒死 │17.4ng/mL;21.9ng/mL  │5.2ng/mL;22.8ng/│3ng/mL;0.5ng/mL   │[59] │
  │      │  │         │           │mL       │          │   │
  ├──────┼──┼─────────┼───────────┼────────┼──────────┼───┤
  │秋水仙碱  │1  │涉秋水仙碱意外死 │           │50μg/L     │10μg/L       │[60] │
  ├──────┼──┼─────────┼───────────┼────────┼──────────┼───┤
  │秋水仙碱  │1  │涉秋水仙碱中毒死 │29ng/mL        │        │<5ng/mL      │[61] │
  ├──────┼──┼─────────┼───────────┼────────┼──────────┼───┤
  │氰化物   │1  │涉氰化钾中毒死  │21.5mg/L       │        │1.3mg/L       │[62] │
  ├──────┼──┼─────────┼───────────┼────────┼──────────┼───┤
  │赛庚啶   │1  │涉赛庚啶和西酞普兰│0.49mg/L       │        │<0.04mg/L     │[45] │
  │      │  │中毒死      │           │        │          │   │
  ├──────┼──┼─────────┼───────────┼────────┼──────────┼───┤
  │右美沙芬  │1  │多种药物中毒   │41.5ng/mL       │        │12ng/mL       │[17] │
  ├──────┼──┼─────────┼───────────┼────────┼──────────┼───┤
  │敌敌畏   │1  │涉敌敌畏中毒死  │—          │—       │0.067mg/L      │[43] │
  ├──────┼──┼─────────┼───────────┼────────┼──────────┼───┤
  │地高辛   │4  │不明       │0.01μg/mL      │        │0.001μg/mL     │[63] │
  ├──────┼──┼─────────┼───────────┼────────┼──────────┼───┤
  │      │  │         │0.012μg/mL      │        │0.009μg/mL     │   │
  ├──────┼──┼─────────┼───────────┼────────┼──────────┼───┤
  │      │  │         │0.039μg/mL      │        │0.003μg/mL     │   │
  ├──────┼──┼─────────┼───────────┼────────┼──────────┼───┤
  │      │  │         │0.098jμg/mL     │        │0.048μg/mL     │   │
  ├──────┼──┼─────────┼───────────┼────────┼──────────┼───┤
  │地尔硫卓  │1  │涉地尔硫卓中毒死 │6.7mg/L        │        │5.5mg/L       │[64] │
  ├──────┼──┼─────────┼───────────┼────────┼──────────┼───┤
  │苯海拉明  │1  │涉苯海拉明中毒死 │1.6mg/L        │        │0.7mg/L       │[65] │
  ├──────┼──┼─────────┼───────────┼────────┼──────────┼───┤
  │苯海拉明  │1  │多种药物中毒   │8.8mg/L        │        │lmg/L        │[41] │
  ├──────┼──┼─────────┼───────────┼────────┼──────────┼───┤
  │地佐环平(MK-│1  │多种药物中毒   │0.15mg/L       │        │<0.1mg/L      │[66] │
  │801)    │  │         │           │        │          │   │
  ├──────┼──┼─────────┼───────────┼────────┼──────────┼───┤
  │度洛西汀  │5  │糖尿病酮症酸中毒 │—          │+<0.05mg/L   │—         │[67] │
  ├──────┼──┼─────────┼───────────┼────────┼──────────┼───┤
  │      │  │吗啡中毒     │           │0.22mg/L    │0.06mg/L      │   │
  ├──────┼──┼─────────┼───────────┼────────┼──────────┼───┤
  │      │  │美沙酮中毒    │0.20mg/L       │0.23mg/L    │0.09mg/L      │   │
  ├──────┼──┼─────────┼───────────┼────────┼──────────┼───┤
  │      │  │多种药物中毒   │0.19mg/L       │0.30mg/L    │0.11mg/L      │   │
  ├──────┼──┼─────────┼───────────┼────────┼──────────┼───┤
  │      │  │过度用药     │0.26mg/L       │0.59mg/L    │0.23mg/L      │   │
  └──────┴──┴─────────┴───────────┴────────┴──────────┴───┘

    
    
  

┌────────┬──┬────────┬────────────────────┬──────────┬───┐
  │目标物     │N  │死因      │血液浓度                │,玻璃体液浓度平均值│参考 │
  │        │  │        │                    │(或范围)      │文献 │
  │        │  │        ├────────────────────┤          │   │
  │        │  │        │外周血心血               │          │   │
  ├────────┼──┼────────┼────────────────────┼──────────┼───┤
  │乙甲丁酰胺   │1  │涉乙甲丁酰胺自杀│5.06mg/L                │2.74mg/L      │[68] │
  ├────────┼──┼────────┼────────────────────┼──────────┼───┤
  │录L乙火元    │1  │多种药物中毒死 │423mg/L                 │12mg/L       │[69] │
  ├────────┼──┼────────┼────────────────────┼──────────┼───┤
  │氯乙烷     │1  │氯乙烷过量和不良│65mg/dL                 │41.7mg/dL      │[70] │
  │        │  │反应致死    │                    │          │   │
  ├────────┼──┼────────┼────────────────────┼──────────┼───┤
  │乙基色胺    │1  │涉乙基色胺中毒 │5.6mg/L                 │2.4mg/L       │PI]  │
  ├────────┼──┼────────┼────────────────────┼──────────┼───┤
  │依托咪酯    │3  │涉依托咪酯中毒死│0.40mg/L                │0.30mg/L      │[72] │
  ├────────┼──┼────────┼────────────────────┼──────────┼───┤
  


  ······

法宝用户,请登录后查看全部内容。
还不是用户?点击单篇购买;单位用户可在线填写“申请试用表”申请试用或直接致电400-810-8266成为法宝付费用户。
【注释】                                                                                                     
【参考文献】

{1}陈瑶清,蔡继峰,文继舫.玻璃体液化学成分规律性改变与死亡时间推断的研究进展[J].法医学杂志,2009,25(1):53-56.

{2} Jordan J, Ruiz-Moreno J M. Advances in the Understanding of Retinal Drug Disposition and the Role of Blood-Ocular Barrier Transporters[J]. Expert Opin Drug Metab Toxicol, 2013,(9):1181-1192.我不休息我还能学

{3}吴永强.血-视网膜屏障及其临床意义[J].国外医学眼科学分册,1992,16(1):18-23.

{4} Cunha-Vaz J G. The Blood-Retinal Barriers System. Basic Concepts and Clinical Evaluation[J]. Exp Eye Res, 2004,(78):715-721.

{5} Mannermaa E, Vellonen K S, Urtti A. Drug Transport in Corneal Epithelium and Blood -Retina Barrier: Emerging Role of Transporters in Ocular Pharmacokinetics[J]. Adv Drug Deliv Rev, 2006,(58):1136-1163.

{6} Holmgren P, Druid H, Holmgren A, et al. Stability of Drugs in Stored Postmortem Femoral Blood and Vitreous Humor[J]. J Forensic Sci, 2004,(49):820-825.

{7} Harper D R A Comparative Study of the Microbiological Contamination of Postmortem Blood and Vitreous Humour Samples Taken for Ethanol Determination[J]. Forensic Sci Int, 1989,(43):37-44.

{8} Bevalot F, Gustin M P, Cartiser N, et al. Interpretation of Drug Concentrations in an Alternative Matrix: The Case of Meprobamate in Vitreous Humor[J]. Int J Legal Med, 2011,(125):463-468.

{9} De Letter E A, De Paepe P, Clauwaert K M, et al. Is Vitreous Humour Useful for the Interpretation of 3,4-Methylenedioxymethamphetamine (MDMA)Blood Levels? Experimental Approach with Rabbits[J]. Int J Legal Med, 2000,(114):29-35.

{10}Melo P, Bastos M L, Teixeira H M. Benzodiazepine Stability in Postmortem Samples Stored at Different Temperatures[J]. J Anal Toxicol, 2012,(36):52-60.

{11}Rees K A, Jones N S, McLaughlin P A, et al. The Effect of Sodium Fluoride Preservative and Storage Temperature on the Stability of Cocaine in Horse Blood, Sheep Vitreous and Deer Muscle[J]. Forensic Sci Int, 2012,(217):182-188.

{12}Felby S, Olsen J. Comparative Studies of Postmortem Barbiturate and Meprobamate in Vitreous Humor, Blood and Liver [J]. J Forensic Sci, 1969,(14):507-514.

{13}Be′valot F, Cartiser N, Bottinelli C, et al. Vitreous Humor Analysis for the Detection of Xenobiotics in Forensic Toxicology: A Review[J]. Forensic Toxicol, 2016,(34):12-40.

{14}Andreasen M F, Telving R, Rosendal I, et al. Andersen LV (2015)A Fatal Poisoning Involving 25C-NBOMe[J]. Forensic Sci Int, 2015,(251):e1-e8.

{15}Decaestecker T, De Letter E, Clauwaert K, et al. Fatal 4MTA Intoxication: Development of a Liquid Chromatographic -Tandem Mass Spectrometric Assay for Multiple Matrices[J]. J Anal Toxicol, 2001,(25):705-710.

{16}Seetohul L N, Pounder D J. Four Fatalities Involving 5IT[J]. J Anal Toxicol, 2013,(37):447-451.

{17}Barbera N, Busardo F P, Indorato F, et al. The Pathogenetic Role of Adulterants in 5 Cases of Drug Addicts with a Fatal Outcome[J]. Forensic Sci Int, 2013,(227):74-76.

{18}Tracqui A, Kintz P, Wendling P, et al. Toxicological Findings in a Fatal Case of Acebutolol Self-Poisoning[J]. J Anal Toxicol, 1992,(16):398-400.

{19}Singer P P, Jones G R, Bannach B G, et al. Acute Fatal Acetaminophen Overdose without Liver Necrosis[J]. J Forensic Sci, 2007,(52):992-994.

{20}Jones G R, Pounder D J. Site Dependence of Drug Concentrations in Postmortem Blood—A Case Study[J]. J Anal Toxicol, 1987,(11):186-190.

{21}Singer P P, Jones G R. Very Unusual Ethanol Distribution in a Fatality[J]. J Anal Toxicol 1997,(21):506-508.

{22}. Bicker W, Monticelli F, Bauer A, et al. Quantification of Aconitine in Post-Mortem Specimens by Validated Liquid Chromatography-Tandem Mass Spectrometry Method: Three Case Reports on Fatal ‘Monkshood’ Poisoning[J]. Drug Test Anal, 2013,(5):753-762.

{23}Jenkins A J, Levine B, Locke J L, et al. A Fatality Due to Alprazolam Intoxication[J]. J Anal Toxicol, 1997,(21):218220.

{24}Tracqui A, Kintz P, Ritter-Lohner S, et al. Toxicological Findings after Fatal Amitriptyline Self-Poisoning[J]. Hum Exp Toxicol, 1990,(9):257-261.

{25}Hurst H E, Jarboe C H. Clinical Findings, Elimination Pharmacokinetics, and Tissue Drug Concentrations Following a Fatal Amitriptyline Intoxication[J]. Clin Toxicol, 1981,(18):119-125.

{26}Langford A M, Pounder D J. Possible Markers for Postmortem Drug Redistribution[J]. J Forensic Sci, 1997,(42):88-92.

{27}Pounder D J, Owen V, Quigley C. Postmortem Changes in Blood Amitriptyline Concentration[J]. Am J Forensic Med Pathol, 1994,(15):224-230.

{28}Ziminski K R, Wemyss C T, Bidanset J H, et al. Comparative Study of Postmortem Barbiturates, Methadone, and Morphine in Vitreous Humor, Blood, and Tissue[J].J Forensic Sci, 1984,(29):903-909.

{29}Winek C L, Wahba W W, Rozin L. Amoxapine Fatalities: Three Case Studies[J]. Forensic Sci Int, 1984,(26):33-38.

{30}Kiely E, Lee C J, Marinetti L. A Fatality from an Oral Ingestion of Methamphetamine[J]. J Anal Toxicol, 2009,(33):557-560.

{31}Logan B K, Weiss E L, Harruff R C. Case Report: Distribution of Methamphetamine in a Massive Fatal Ingestion[J]. J Forensic Sci, 1996,(41):322-323.

{32}Sayama H, Komura H, Kogayu M. Application of Hybrid Approach Based on Empirical and Physiological Concept for Predicting Pharmacokinetics in Humans—Usefulness of Exponent on Prospective Evaluation of Predictability [J]. Drug Metab Dispos, 2013,(41):498-507.

{33}Quatrehomme G, Ricq O, Lapalus P, et al. Acute Arsenic Intoxication: Forensic and Toxicologic Aspects (An Observation)[J]. J Forensic Sci, 1992,(37):1163-1171.

{34}Garside D, Ropero-Miller J D, Riemer E C. Postmortem Tissue Distribution of Atomoxetine Following Fatal and Nonfatal Doses-Three Case Reports[J]. J Forensic Sci, 2006,(51):179-182.

{35}Brooks J P, Phillips M, Stafford D T, et al. A Case of Benzphetamine Poisoning[J]. Am J Forensic Med Pathol, 1982,(3):245-247.

{36}Palmer R B, Alakija P, de Baca J E, et al. Fatal Brodifacoum Rodenticide Poisoning: Autopsy and Toxicologic Findings[J]. J Forensic Sci, 1999,(44):851-855.

{37}Yazzie J, Kelly S C, Zumwalt R E, et al. Fatal Bupivacaine Intoxication Following Unusual Erotic Practices[J]. J Forensic Sci, 2004,(49):351-353

{38}Hutchison J D Jr, Harris A, Rasmussen S A, et al. Concentrations of Butriptyline in Biological Fluids Following a Fatal Overdose[J]. J Anal Toxicol, 1994,(18):220-224.

{39}Garriott J C, Simmons L M, Poklis A, et al. Five Cases of Fatal Overdose from Caffeine-Containing “Look-Alike” Drugs[J]. J Anal Toxicol, 1985,(9):141-143.

{40}Tombolini A, Cingolani M. Fatal Accidental Ingestion of Carbon Tetrachloride: A Postmortem Distribution Study[J]. J Forensic Sci 1996,(41):166-168.

{41}Gerace E, Ciccotelli V, Rapetti P, et al. Distribution of Chloralose in a Fatal Intoxication[J]. J Anal Toxicol, 2012,(36):452-456.

{42}Wogoman H, Steinberg M, Jenkins A J. Acute Intoxication with Guaifenesin, Diphenhydramine, and Chlorpheniramine[J]. Am J Forensic Med Pathol, 1999,(20):199-202.

{43}Moriya F, Hashimoto Y, Kuo T L. Pitfalls when Determining Tissue Distributions of Organophosphorus Chemicals: Sodium Fluoride Accelerates Chemical Degradation[J]. J Anal Toxicol, 1999,(23):210-215.

{44}Anastos N, McIntyre I M, Lynch M J, et al. Postmortem Concentrations of Citalopram[J]. J Forensic Sci, 2002,(47):882-884.

{45}Hargrove V, Molina D K. A Fatality Due to Cyproheptadine and Citalopram[J]. J Anal Toxicol, 2009,(33):564-567.

{46}Magdalan J, Zawadzki M, Sloka T, et al. Suicidal Overdose with Relapsing Clomipramine Concentrations Due to a Large Gastric Pharmacobezoar[J]. Forensic Sci Int, 2013,(229):e19-e22.

{47}Sporkert F, Augsburger M, Giroud C, et al. Determination and Distribution of Clotiapine (Entumine)in Human Plasma, Post-Mortem Blood and Tissue Samples from Clotiapine-Treated Patients and from Autopsy Cases [J]. Forensic Sci Int, 2007,(170):193-199.

{48}Keller T, Miki A, Binda S, et al. Fatal Overdose of Clozapine[J]. Forensic Sci Int, 1997,(86):119-125.

{49}Poklis A, Maginn D, Barr J L. Tissue Disposition of Cocaine in Man: A Report of Five Fatal Poisonings[J]. Forensic Sci Int, 1987,(33):83-88.

{50}Peretti F J, Isenschmid D S, Levine B, et al. Cocaine Fatality: An Unexplained Blood Concentration in a Fatal Overdose[J]. Forensic Sci Int, 1990,(48):135-138.

{51}Furnari C, Ottaviano V, Sacchetti G, et al. A Fatal Case of Cocaine Poisoning in a Body Packer[J]. J Forensic Sci 2002,(47):208-210.

{52}Alvear E, von Baer D, Mardones C, et al. Determination of Cocaine and Its Major Metabolite Benzoylecgonine in Several Matrices Obtained from Deceased Individuals with Presumed Drug Consumption Prior to Death[J]. J Forensic Leg Med, 2014,(23):37-43.

{53}Amon C A, Tate L G, Wright R K, et al. Sudden Death Due to Ingestion of Cocaine[J]. J Anal Toxicol 1986,(10):217-218.

{54}Di Maio V J, Garriott J C. Four Deaths Due to Intravenous Injection of Cocaine[J]. Forensic Sci Int, 1978,(12):119-125.

{55}Giroud C, Michaud K, Sporkert F, et al. A Fatal Overdose of Cocaine Associated with Coingestion of Marijuana, Buprenorphine, and Fluoxetine. Body Fluid and Tissue Distribution of Cocaine and Its Metabolites Determined by Hydrophilic Interaction Chromatography-Mass Spectrometry (HILIC-MS)[J]. J Anal Toxicol, 2004,(28):464-474.

{56}Fucci N, De Giovanni N, De Giorgio F, et al. An Evaluation of the Cozart RapiScan System as an Onsite Screening Tool for Drugs of Abuse in a Non-Conventional Biological Matrix: Vitreous Humor[J]. Forensic Sci Int, 2006,(156):102-105.

{57}Sanches L R, Seulin S C, Leyton V, et al. Determination of Opiates in Whole Blood and Vitreous Humor: A Study of the Matrix Effect and an Experimental Design to Optimize Conditions for the Enzymatic Hydrolysis of Glucuronides[J]. J Anal Toxicol, 2012,(36):162-170.

{58}Frost J, Lokken T N, Brede W R, et al. A Validated Method for Simultaneous Determination of Codeine, Codeine6-Glucuronide, Norcodeine, Morphine, Morphine-3-Glucuronide and Morphine -6-Glucuronide in Post -Mortem Blood, Vitreous Fluid, Muscle, Fat and Brain Tissue by LC-MS[J]. J Anal Toxicol, 2015,(39):203-212.

{59}Cheze M, Deveaux M, Pepin G . Liquid Chromatographytandem Mass Spectrometry for the Determination of Colchicine in Postmortem Body Fluids. Case Report of Two Fatalities and Review of the Literature[J]. J Anal Toxicol, 2006,(30):593-598.

{60}Jones G R, Singer P P, Bannach B.Application of LC-MS Analysis to a Colchicine Fatality[J]. J Anal Toxicol, 2002,(26):365-369.

{61}Lauer E, Widmer C, Versace F, et al. Body Fluid and Tissue Analysis Using Filter Paper Sampling Support Prior to LC-MS/MS: Application to Fatal Overdose with Colchicine[J]. Drug Test Anal, 2013,(5):763-772.

{62}Blanco P J, Rivero A G. First Case of Illegal Euthanasia in Spain: Fatal Oral Potassium Cyanide Poisoning[J]. Soud Lek, 2004,(49):30-33.

{63}DiMaio V J, Garriott J C, Putnam R. Digoxin Concentrations in Postmortem Specimens after Overdose and Therapeutic Use[J]. J Forensic Sci, 1975,(20):340-347.

{64}Kaliciak H A, Huckin S N, Cave W S. A Death Attributed Solely to Diltiazem[J]. J Anal Toxicol, 1992,(16):102-103.

{65}Baker A M, Johnson D G, Levisky J A, et al. Fatal Diphenhydramine Intoxication in Infants[J]. J Forensic Sci, 2003,(48):425-428.

{66}Mozayani A, Schrode P, Carter J, et al. A Multiple Drug Fatality Involving MK-801(Dizocilpine),a Mimic of Phencyclidine[J]. Forensic Sci Int, 2003,(133):113-117.

{67}Anderson D, Reed S, Lintemoot J, et al. A First Look at Duloxetine (Cymbalta)in a Postmortem Laboratory[J]. J Anal Toxicol, 2006,(30):576-580.

{68}Morini L, Pozzi F, Risso E, et al. Distribution of Embutramide and Mebezonium Iodide in a Suicide after Tanax Injection[J]. J Anal Toxicol, 2012,(36):349-352.

{69}Broussard L A, Broussard A K, Pittman T S, et al. Death Due to Inhalation of Ethyl Chloride [J]. J Forensic Sci, 2000,(45):223-225.

{70}Yacoub I, Robinson C A, Simmons G T, et al. Death Attributed to Ethyl Chloride[J]. J Anal Toxicol, 1993,(17):384-385.

{71}Morano R A, Spies C, Walker F B, et al. Fatal Intoxication Involving Etryptamine[J]. J Forensic Sci, 1993,38:721-725.

{72}Molina D K, Hargrove V M, Rodriguez R G. Distribution of Etomidate in a Fatal Intoxication[J]. J Anal Toxicol, 2008,(32):715-718.

{73}Anderson D T, Muto J J. Duragesic Transdermal Patch: Postmortem Tissue Distribution of Fentanyl in 25 Cases[J]. J Anal Toxicol, 2000,(24):627-634.

{74}Coopman V, Cordonnier J, Pien K, et al. LC -MS/MS Analysis of Fentanyl and Norfentanyl in a Fatality Due to Application of Multiple Durogesic Transdermal Therapeutic Systems[J]. Forensic Sci Int, 2007,(169):223-227.

{75}Wiesbrock U O, Rochholz G, Franzelius C, et al. Excessive Use of Fentanyl Patches as the Only Means of Suicide[J]. Arch Kriminol, 2008,(222):23-30.

{76}Levine B, Chute D, Caplan Y H. Flecainide Intoxication[J]. J Anal Toxicol, 1990,(14):335-336.

{77}Martinez M A, Ballesteros S, Piga F J, et al. The Tissue Distribution of Fluoride in a Fatal Case of Self -Poisoning[J]. J Anal Toxicol, 2007,(31):526-533.

{78}Johnson R D, Lewis R J, Angier M K. The Distribution of Fluoxetine in Human Fluids and Tissues[J]. J Anal Toxicol, 2007,(31):409-414.

{79}McIntyre I M, Syrjanen M L, Lawrence K L, et al. A Fatality Due to Flurazepam[J]. J Forensic Sci, 1994,(39):1571-1574.

{80}Kunsman G W, Rodriguez R, Rodriguez P. Fluvoxamine Distribution in Postmortem Cases[J]. Am J Forensic Med Pathol, 1999,(20):78-83.

{81}Ferrara S D, Tedeschi L, Frison G, et al. Fatality Due to Gamma-Hydroxybutyric Acid (GHB)and Heroin Intoxication[J]. J Forensic Sci, 1995,(40):501-504.

{82}Kintz P, Villain M, Pelissier A L, et al.Unusually High Concentrations in a Fatal GHB Case[J]. J Anal Toxicol, 2005,(29):582-585.

{83}Mazarr-Proo S, Kerrigan S. Distribution of GHB in Tissues and Fluids Following a Fatal Overdose[J]. J Anal Toxicol, 2005,(29):398-400.

{84}Meatherall R, Lee C, Phillips S. Accidental Death from Hydromorphone Ingestion[J]. J Forensic Sci, 2011,(56): S271-S274.

{85}Thevis M, Thomas A, Schanzer W, et al. Measuring Insulin in Human Vitreous Humour Using LC-MS/MS[J]. Drug Test Anal, 2012,(4):53-56.

{86}Palmiere C, Sabatasso S, Torrent C, et al. Post-Mortem Determination of Insulin Using Chemiluminescence Enzyme Immunoassay: Preliminary Results[J]. Drug Test Anal, 2015,(7):797-803.

{87}Hess C, Madea B, Daldrup T, et al. Determination of Hypoglycaemia Induced by Insulin or Its Synthetic Analogues Post Mortem[J]. Drug Test Anal, 2013,(5):802-807.

{88} Nowicka J, Skowronek R, Czech E, et al. Comments on ‘Measuring Insulin in Human Vitreous Humour Using LCMS/MS’ by Thevis et al[J]. Drug Test Anal, 2013,(5):133-134.

{89}Winston D C. Suicide via Insulin Overdose in Nondiabetics: the New Mexico Experience[J]. Am J Forensic Med Pathol, 2000,(21):237-240.

爬数据可耻

{90}Pricone M G, King C V, Drummer O H, et al. Postmortem Investigation of Lamotrigine Concentrations [J]. J Forensic Sci, 2000,(45):11-15.

{91}Yonemitsu K, Pounder D J. Postmortem Changes in Blood Tranylcypromine Concentration: Competing Redistribution and Degradation Effects[J]. Forensic Sci Int, 1993,(59):177-184.

{92}Mazzola C D, Miron S, Jenkins A J. Loxapine Intoxication: Case Report and Literature Review[J]. J Anal Toxicol, 2000,(24):638-641.

{93}Favretto D, Frison G, Maietti S, et al. LC-ESI-MS/MS on an Ion Trap for the Determination of LSD, Iso-LSD, Nor-LSD and 2-Oxo-3-Hydroxy-LSD in Blood, Urine and Vitreous Humor[J]. Int J Legal Med, 2007,(121):259265.

{94}Gaillard Y P, Cuquel A C, Boucher A, et al. A Fatality FollowingIngestion of the Designer Drug Meta-Chlorophenylpiperazine (mCPP)in an Asthmatic-HPLC-MS/MS Detection in Biofluids and Hair[J]. J Forensic Sci, 2013,(58):263-269.

{95}De Letter E A, Clauwaert K M, Lambert W E, et al. Distribution Study of 3,4-Methylenedioxymethamphetamine and 3,4-Methylenedioxyamphetamine in a Fatal Overdose[J]. J Anal Toxicol, 2002,(26):113-118.

{96}Moore K A, Mozayani A, Fierro M F, et al. Distribution of 3,4-Methylenedioxymethamphetamine (MDMA)and 3,4Methylenedioxyamphetamine (MDA)Stereoisomers in a Fatal Poisoning[J]. Forensic Sci Int, 1996,(83):111-119.

{97}De Letter E A, Bouche M P, Van Bocxlaer J F, et al. Interpretation of a 3,4-Methylenedioxymethamphetamine (MDMA)Blood Level: Discussion by Means of a Distribution Study in Two Fatalities[J]. Forensic Sci Int, 2004,(141):85-90.

{98}Adamowicz P, Tokarczyk B, Stanaszek R, et al. Fatal Mephedrone Intoxication—A Case Report[J]. J Anal Toxicol, 2013,(37):37-42.

{99}Henry J L, Epley J, Rohrig T P. The Analysis and Distribution of Mescaline in Postmortem Tissues[J]. J Anal Toxicol, 2003,(27):381-382.

{100}Couper F J, Chopra K, Pierre-Louis M L. Fatal Methadone Intoxication in an Infant[J]. Forensic Sci Int, 2005,(153):71-73.

{101}Wu Chen N B, Donoghue E R, Schaffer M I. Methanol Intoxication: Distribution in Postmortem Tissues and Fluids Including Vitreous Humor[J]. J Forensic Sci, 1985,(30):213-216.

{102}Beno J M, Hartman R, Wallace C, et al. Homicidal Methanol Poisoning in a Child[J]. J Anal Toxicol, 2011,(35):524-528.

{103}Pla A, Hernandez A F, Gil F, et al. A Fatal Case of Oral Ingestion of Methanol. Distribution in Postmortem Tissues and Fluids Including Pericardial Fluid and Vitreous Humor[J]. Forensic Sci Int, 1991,(49):193-196.

{104}Andresen H, Schmoldt H, Matschke J, et al. Fatal Methanol Intoxication with Different Survival Times-Morphological Findings and Postmortem Methanol Distribution[J]. Forensic Sci Int, 2008,(179):206-210.

{105}Avella J, Briglia E, Harleman G, et al. Percutaneous Absorption and Distribution of Methanol in a Homicide[J]. J Anal Toxicol, 2005,(29):734-737.

{106}Akhgari M, Panahianpour M H, Bazmi E, et al. Fatal Methanol Poisoning:Features of Liver Histopathology[J]. Toxicol Ind Health, 2013,(29):136-141.

{107}Hantson P, Haufroid V, Mahieu P. Determination of Formic Acid Tissue and Fluid Concentrations in Three Fatalities Due to Methanol Poisoning[J]. Am J Forensic Med Pathol, 2000,(21):335-338.

{108}Moriya F, Hashimoto Y. A Fatal Poisoning Caused by Methomyl and Nicotine[J]. Forensic Sci Int, 2005,(149):167-170.

{109}McIntyre I M, Hamm C E, Aldridge L, et al. Acute Methylone Intoxication in an Accidental Drowning -A Case Report[J]. Forensic Sci Int, 2013,(231):e1-e3.

{110}Cantrell F L, Ogera P, Mallett P, et al. Fatal Oral Methylphenidate Intoxication with Postmortem Concentrations[J]. J Forensic Sci, 2014,(59):847-849.

{111}Rohrig T P, Rundle D A, Leifer W N. Fatality Resulting from Metoprolol Overdose[J]. J Anal Toxicol, 1987,(11):231-232.

{112}Stajic M, Granger R H, Beyer J C. Fatal Metoprolol Overdose [J]. J Anal Toxicol, 1984,(8):228-230.

{113}Kempton J, Manoukian A, Levine B, et al. A Mexiletine Intoxication[J]. J Anal Toxicol, 1994,(18):346-347.

{114}Rohrig T P, Harty L E. Postmortem Distribution of Mexiletine in a Fatal Overdose[J]. J Anal Toxicol, 1994,(18):354356.

{115}Anderson D T, Fritz K L, Muto J J. Distribution of Mirtazapine (Remeron)in Thirteen Postmortem Cases[J]. J Anal Toxicol, 1999,(23):544-548.

{116}Kirkton C, McIntyre I M. Therapeutic and Toxic Concentrations of Mirtazapine[J]. J Anal Toxicol, 2006,(30):687-691.

{117}McIntyre I M, Trochta A, Stolberg S, et al. Mitragynine ‘Kratom’ Related Fatality: A Case Report with Postmortem Concentrations[J]. J Anal Toxicol, 2015,(39):152-155.

{118}McIntyre I M, King C V, Staikos V, et al. A Fatality Involving Moclobemide, Sertraline, and Pimozide[J]. J Forensic Sci, 1997,(42):951-953.

{119}Winek C L, Wahba W W, Rozin L. Heroin Fatality Due to Penile Injection[J]. Am J Forensic Med Pathol, 1999,(20):90-92.

{120}Gock S B, Wong S H, Stormo K A, et al. Self-Intoxication with Morphine Obtained from an Infusion Pump[J]. J Anal Toxicol 1999,(23):130-133.

{121}Kintz P, Mangin P, Lugnier A A, et al. Toxicological Data after Heroin Overdose[J]. Hum Toxicol, 1989,(8):487489.

{122}Wetli C V, Rao A, Rao V J. Fatal Heroin Body Packing[J]. Am J Forensic Med Pathol, 1997,(18):312-318.

{123}Seetohul L N, De Paoli G, Drummond G, et al. Nefopam Hydrochloride: A Fatal Overdose[J]. JAnalToxicol, 2015,(39):486-489.

{124}Kemp P M, Sneed G S, George C E, et al. Postmortem Distribution of Nicotine and Cotinine from a Case Involving the Simultaneous Administration of Multiple Nicotine Transdermal Systems[J]. J Anal Toxicol, 1997,(21):310-313.

{125}Jenkins A J, Sarconi K M, Raaf H N. Determination of Olanzapine in a Postmortem Case[J]. J Anal Toxicol, 1998,(22):605-609.

{126}Linnet K, Steentoft A, Simonsen K W, et al. An Oxcarbazepine-Related Fatality with an Overview of 26 Oxcarbazepine Postmortem Cases[J]. ForensicSciInt, 2008,(177):248-251.

{127}Anderson D T, Fritz K L, Muto J J. Oxycontin: The Concept of a “Ghost Pill” and the Postmortem Tissue Distribution of Oxycodone in 36 Cases[J]. J Anal Toxicol, 2002,(26):448-459.

{128}Al-Asmari A I, Anderson R A, Cooper G A. Oxycodonerelated Fatalities in the West of Scotland[J]. J Anal Toxicol, 2009,(33):423-432.

{129}Romain N, Giroud C, Michaud K, et al. Suicide by Injection of a Veterinarian Barbiturate Euthanasia Agent: Report of a Case and Toxicological Analysis[J]. Forensic Sci Int, 2003,(131):103-107.

{130}Crichton M L, Shenton C F, Drummond G, et al. Analysis of Phenazepam and 3-Hydroxyphenazepam in PostMortem Fluids and Tissues[J]. Drug Test Anal, 2015,7(10):926-936.

{131}Sturner W Q, Spruill F G, Garriott J C. Two Propylhexedrine-Associated Fatalities: Benzedrine Revisited[J]. J Forensic Sci, 1974,(19):572-574.

{132}Flammia D D, Valouch T, Venuti S. Tissue Distribution of Quetiapine in 20 Cases in Virginia[J]. J Anal Toxicol, 2006,(30):287-292.

{133}Langman L J, Kaliciak H A, Carlyle S. Fatal Overdoses Associated with Quetiapine[J]. J Anal Toxicol, 2004,(28):520-525.

{134}Hopenwasser J, Mozayani A, Danielson T J, et al. Postmortem Distribution of the Novel Antipsychotic Drug Quetiapine[J]. J Anal Toxicol, 2004,(28):264-267.

{135}Coopman V, De Leeuw M, Cordonnier J, et al. Suicidal Death after Injection of a Castor Bean Extract (Ricinus communis L.)[J]. Forensic Sci Int, 2009,(189):e13-e20.

{136}Duband S, Bidat C, Gaillard Y, et al. A Fatal Intoxication Case Involving Ropinirole[J]. J Forensic Leg Med, 2012,(19):422-425.

{137}Lewis R J, Angier M K, Williamson K S, et al. Analysis of Sertraline in Postmortem Fluids and Tissues in 11 Aviation Accident Victims[J]. J Anal Toxicol, 2013,(37):208-216.

{138}Lindsey T, O’Hara J, Irvine R, et al. Strychnine Overdose Following Ingestion of Gopher Bait[J]. J Anal Toxicol, 2004,(28):135-137.

{139}Ferslew K E, Hagardorn A N, McCormick W F.Postmortem Determination of the Biological Distribution of Sufentanil and Midazolam after an Acute Intoxication[J]. J Forensic Sci, 1989,(34):249-257.

{140}Lin D L, Lin R L. Distribution of 11-Nor-9-CarboxyD9-Tetrahydrocannabinol in Traffic Fatality Cases[J]. J Anal Toxicol, 2005,(29):58-61.

{141}Mozayani A, Carter J, Nix R. Distribution of Topiramate in a Medical Examiner’s Case[J]. J Anal Toxicol, 1999,(23):556-558.

{142}Moriya F, Hashimoto Y.A Case of Fatal Triazolam Overdose[J]. Leg Med, 2003,5(Suppl 1):S91-S95.

{143}Bayley M, Walsh F M, Valske M J. Report of a Fatal, Acute Tripelennamine Intoxication[J]. J Forensic Sci, 1975,(20):539-543.

{144}Poklis A, Poklis J L, Trautman D, et al. Disposition of Valproic Acid in a Case of Fatal Intoxication[J]. J Anal Toxicol, 1998,(22):537-540.

{145}Stove C P, De Letter E A, Piette M H, et al. Fatality Following a Suicidal Overdose with Varenicline[J]. Int J Legal Med, 2013,(127):85-91.

{146}Kunsman G W, Kunsman C M, Presses C L, et al. A Mixed-Drug Intoxication Involving Venlafaxine and Verapamil[J]. J Forensic Sci, 2000,45:926-928.

{147}Goeringer K E, McIntyre I M, Drummer O H. Postmortem Tissue Concentrations of Venlafaxine[J]. Forensic Sci Int, 2001,(121):70-75.

{148}Parsons A T, Anthony R M, Meeker J E. Two Fatal Cases of Venlafaxine Poisoning[J]. J Anal Toxicol, 1996,(20):266-268.

{149}Jaffe P D, Batziris H P, van der Hoeven P, et al. A Study Involving Venlafaxine Overdoses: Comparison of Fatal and Therapeutic Concentrations in Postmortem Specimens[J]. J Forensic Sci, 1999,(44):193-196.

{150}Kintz P, Tracqui A, Potard D, et al. An Unusual Death by Zipeprol Overdose[J]. Forensic Sci Int, 1994,(64):159163.

{151}Gock S B, Wong S H, Nuwayhid N, et al. Acute Zolpidem Overdose—Report of Two Cases[J]. J Anal Toxicol, 1999,(23):559-562.

{152}Meatherall R C. Zopiclone Fatality in a Hospitalized Patient[J]. J Forensic Sci, 1997,(42):340-343.

{153}Anna Pelander, Johanna Ristimaa, Ilkka Ojanper?. Vitreous Humor as an Alternative Matrix for Comprehensive Drug Screening in Postmortem Toxicology by Liquid Chromatography-Time-of-Flight Mass Spectrometry[J]. J Anal Toxicol, 2010,(34):312-318.

{154}Imir G M, Robert L F, Iain M M. Assessment and Comparison of Vitreous Humor as an Alternative Matrix for Forensic Toxicology Screening by GC-MS[J]. J Anal Toxicol, 2016,(40):243-247.

{155}Pragst F, Spiegel K, Leuschner U, et al. Detection of 6Acetylmorphine in Vitreous Humor and Cerebrospinal Fluid—Comparison with Urinary Analysis for Proving Heroin Administration in Opiate Fatalities[J]. J Anal Toxicol, 1999,(23):168-172.

{156}Wyman J, Bultman S. Postmortem Distribution of Heroin Metabolites in Femoral Blood, Liver, Cerebrospinal Fluid, and Vitreous Humor[J]. J Anal Toxicol, 2004,(28):260263.

{157}Rees K A, Pounder D J, Osselton M D. Distribution of Opiates in Femoral Blood and Vitreous Humour in Heroin/Morphine- Related Deaths[J]. Forensic Sci Int, 2013,(226):152-159.

{158}Robertson M D, Drummer O H. Postmortem Distribution and Redistribution of Nitrobenzodiazepines in Man[J]. J Forensic Sci, 1998,(43):9-13.

{159}Scott K S, Oliver J S. The Use of Vitreous Humor as an Alternative to Whole Blood for the Analysis of Benzodiazepines[J]. J Forensic Sci, 2001,(46):694-697.

{160}Rees KA, Seulin S, Yonamine M, et al. Analysis of Skeletal Muscle Has Potential Value in the Assessment of Cocainerelated Deaths[J]. ForensicSciInt, 2013,(226):46-53.

{161}Jenkins A J, Oblock J. Phencyclidine and Cannabinoids in Vitreous Humor[J]. Leg Med, 2008,(10):201-203.

{162}Scott K S, Oliver J S. Vitreous Humor as an Alternative Sample to Blood for the Supercritical Fluid Extraction of Morphine and 6-Monoacetylmorphine[J]. Med Sci Law, 1999,(39):77-81.

{163}Knittel J L, Clay D J, Bailey K M, et al. Comparison of Oxycodone in Vitreous Humor and Blood Using EMIT Screening and Gas Chromatographic-Mass Spectrometric Quantitation[J]. J Anal Toxicol, 2009,(33):433-438.

{164}Antonides H M, Kiely E R, Marinetti L J. Vitreous Fluid Quantification of Opiates, Cocaine, and Benzoylecgonine: Comparison of Calibration Curves in both Blood and Vitreous Matrices with Corresponding Concentrations in Blood[J]. J Anal Toxicol, 2007,(31):469-476.

{165}Duer W C, Spitz D J, McFarland S. Relationships between Concentrations of Cocaine and Its Hydrolysates in Peripheral Blood, Heart Blood, Vitreous Humor and Urine[J]. J Forensic Sci, 2006,(51):421-425.

{166}Fernandez P, Aldonza M, Bouzas A, et al. GC-FID Determination of Cocaine and Its Metabolites in Human Bile and Vitreous Humor[J]. J Appl Toxicol, 2006,(26):253257.

{167}Carvalho V M, Fukushima A R, Fontes L R, et al. Cocaine Postmortem Distribution in Three Brain Structures: A Comparison with Whole Blood and Vitreous Humour[J].JForensic Leg Med, 2013,(20):143-145.

{168}Kintz P, Villain M, Cirimele V, et al. GHB in Postmortem Toxicology. Discrimination between Endogenous Production from Exposure Using Multiple Specimens [J].Forensic Sci Int, 2004,(143):177-181.

{169}Andresen -Streichert H, Jensen P, Kietzerow J, et al. Endogenous Gamma-Hydroxybutyric Acid (GHB)Concentrations in Post-Mortem Specimens and Further Recommendation for Interpretative Cut-Offs[J]. Int J Legal Med, 2014,(129):57-68.

{170}Castro A L, Dias M, Reis F, et al. Gamma-Hydroxybutyric Acid Endogenous Production and Post-Mortem Behaviour—The Importance of Different Biological Matrices, Cut-Off Reference Values, Sample Collection and Storage Conditions[J]. J Forensic Leg Med, 2014,(27C):17-24.

{171}Ioan B G, Jitaru V, Damian R, et al. Study on the Relationship between the Concentration of Ethanol in the Blood, Urine and the Vitreous Humour[J]. Rom J Leg Med, 2015,(23):211-216.

{172}Jones A, Holmgren P. Uncertainty in Estimating Blood Ethanol Concentrations by Analysis of Vitreous Humour[J].JClin Pathol.2001,54(9):699-702.

{173}DiMaio V J, DiMaio D. Forensic Pathology[M].2nd ed. Florida: CRC Press LLC, 2001.

{174}Olsen T, Hearn W L.Stablity of Ethanol in Postmortem Blood and Vitreous Humor in Long -Term Refrigerated Storage[J]. J Anal Toxicol, 2003,27(7):517-519.

{175}De Letter E A, Clauwaert K M, Belpaire F M, et al. Post -Mortem Redistribution of 3,4-Methylenedioxy methamphetamine (MDMA, “Ecstasy”)in the Rabbit. Part I: Experimental Approach after in Vivo Intravenous Infusion[J]. Int J Legal Med, 2002,(116):216-224.

{176}Ritz S, Harding P, Martz W, et al. Measurement of Digitalis-Glycoside Levels in Ocular Tissues: A Way to Improve Postmortem Diagnosis of Lethal Digitalis-Glycoside Poisoning I. Digoxin[J]. Int J Legal Med, 1992,(105):149154.

{177}McKinney P E, Phillips S, Gomez H F, et al. Vitreous Humor Cocaine and Metabolite Concentrations: Do Postmortem Specimens Reflect Blood Levels at the Time of Death[J]. J Forensic Sci, 1995,(40):102-107.

{178}Maskell P D, Albeishy M, De Paoli G, et al. Postmortem Redistribution of the Heroin Metabolites Morphine and Morphine-3-Glucuronide in Rabbits over 24h[J]. Int J Legal Med, 2016,130(2):519-531.

©北大法宝:(www.pkulaw.cn)专业提供法律信息、法学知识和法律软件领域各类解决方案。北大法宝为您提供丰富的参考资料,正式引用法规条文时请与标准文本核对
欢迎查看所有产品和服务。法宝快讯:如何快速找到您需要的检索结果?    法宝V5有何新特色?
扫码阅读
本篇【法宝引证码CLI.A.1222109      关注法宝动态:  

法宝联想
【相似文献】

热门视频更多